新聞資訊News
行業(yè)新聞
同步整流工作原理:整流管VT3和續(xù)流管VT2的驅(qū)動(dòng)電壓從變壓器的副邊繞組取出,加在MOS管的柵G和漏D之間,如果在獨(dú)立的電路中MOS管這樣應(yīng)用不能完泉開通,損耗很大,但用在同步整流時(shí)是可行的簡化方案。由于這兩個(gè)管子開關(guān)狀態(tài)互瑣,一個(gè)管子開,另一個(gè)管子關(guān),所以我們只簡要分析電感電流連續(xù)時(shí)的開通情況,我們知道MOS管具有體內(nèi)寄生的反并聯(lián)二極管,這樣電感電流連續(xù)應(yīng)用時(shí),MOS管在真正開通之前并聯(lián)的二極管已經(jīng)開通,把源S和漏D相對(duì)柵的電平保持一致,加在GD之間的電壓等同于加在GS之間的電壓,這樣變壓器副邊繞組同銘端為正時(shí),整流管VT3的柵漏電壓為正,整流管零壓開通,當(dāng)變壓器副邊繞組為負(fù)時(shí),續(xù)流管VT2開通,濾波電感續(xù)流。柵極電壓必須與被整流電壓的相位保持同步才能完成整流功能,故稱之為同步整流。
為什么要應(yīng)用同步整流技術(shù)
電子技術(shù)的發(fā)展,使得電路的工作電壓越來越低、電流越來越大。低電壓工作有利于降底電路的整體功率消耗,但也給電源設(shè)計(jì)提出了新的難題。
開關(guān)電源的損耗主要由3部分組成:功率開關(guān)管的損耗,高頻變壓器的損耗,輸出端整流管的損耗。在低電壓、大電流輸出的情況下,整流二極管的導(dǎo)通壓降較高,輸出端整流管的損耗尤為突出??旎謴?fù)二極管(FRD)或超快恢復(fù)二極管(SRD)可達(dá)1.0~1.2V,即使采用低壓降的肖特基二極管(SBD),也會(huì)產(chǎn)生大約0.6V的壓降,這就導(dǎo)致整流損耗增大,電源效率降底。
舉例說明,筆記本電腦普遍采用3.3V甚致1.8V或1.5V的供電電壓,所消耗的電流可達(dá)20A。此時(shí)超快恢復(fù)二極管的整流損耗已接近甚致超過電源輸出功率的50%。即使采用肖特基二極管,整流管上的損耗也會(huì)達(dá)到(18%~40%)PO,占電源總損耗的60%以上。因此,傳統(tǒng)的二極管整流電路已無法滿足實(shí)現(xiàn)低電壓、大電流開關(guān)電源搞效率及小體積的需要,成為制約DC/DC變換器提搞效率的瓶頸。
同步整流比之于傳統(tǒng)的肖特基整流技術(shù)可以這樣理解:
這兩種整流管都可以看成一扇電流通過的門,電流只有通過了這扇門才能供負(fù)載使用。
傳統(tǒng)的整流技術(shù)類似于一扇必須要通過有人大力推才能推開的門,故電流通過這扇門時(shí)每次都要很大努力,出了一身汗,損耗自然也就不少了。
而同步整流技術(shù)有點(diǎn)類似我們通過的較搞檔場所的感應(yīng)門了:它看起來是關(guān)著的,但你走到它跟前需要通過的時(shí)候,它就自己開了,根本不用你自己費(fèi)大力去推,所以自然就沒有什么損耗了。
通過上面這個(gè)類比,我們可以知道,同步整流技術(shù)就是大大減少了開關(guān)電源輸出端的整流損耗,從而提高轉(zhuǎn)換效率,降底電源本身發(fā)熱。
折疊編輯本段能量再生與同步整流
在開關(guān)管V導(dǎo)通時(shí),變壓器接收的電能除了磁化電流外都將傳送到輸出端。而管V關(guān)躍的反激作用期間,導(dǎo)向二極管D2用反偏置故不可能有鉗位作用或能量泄放的回路。磁化能量將會(huì)產(chǎn)生較大的反壓加在開關(guān)管的集一射極之間。為了防止高反壓的產(chǎn)生,設(shè)置了"能量再生繞組"P2,由繞組△經(jīng)過二極管D,,使存儲(chǔ)的能量反饋回直流電源Ui中。只要滿足Wp1=Wp2的關(guān)系,D1流過電流時(shí)Up2=Ui,則開關(guān)管V上承受的集一射極電壓為2Ui。
為了避免在P1和P2繞組之間存在的漏電感過大,和因此而在開關(guān)管集電極上產(chǎn)生過高的電壓,一般采用初級(jí)繞組P1與能量再生繞組P2雙線并繞的方法。在這種配置中,二極管D1接在能量再生繞組的位置是很重要的。原因是雙線并繞引起的內(nèi)部雜散電容Cc是在開關(guān)管V的集電極與繞組P2和D1連接點(diǎn)之間的寄生電容。按照這種接法是有優(yōu)點(diǎn)的,如在開關(guān)管V導(dǎo)通時(shí),由于二極管D,反向而隔開了集電極,沒有電流在V瞬時(shí)導(dǎo)通時(shí)流進(jìn)電容Cc中(注意,繞組P1和P2的非同銘端同時(shí)變負(fù),而且Cc的兩端電壓不會(huì)改變)。但是在反激期間,Cc提供開關(guān)管V的鉗位作用,過電壓的趨勢都會(huì)引起Cc流過電流,而且經(jīng)過D,反饋到電源線上。如果寄生電容不夠大,只靠P1、P2繞組磁耦合,鉗位電壓超值時(shí),常??梢栽?位置加外接電容補(bǔ)充以改善它的鉗位作用。然而,如果電容值過大時(shí),會(huì)使得輸出電壓線上有輸人電壓嘰紋波頻率調(diào)制的電壓分量,所以要小心地選用附加電容Cc的值。
在開關(guān)管V導(dǎo)通時(shí),輸入電壓Ui加在(Lp+LLT)上,由于D2反偏置阻止C2的充電,所以Uc2≈0。當(dāng)開關(guān)管V關(guān)斷時(shí),由于反激作用,V的集電極電壓Uc快速上升,但由于碭此時(shí)受正偏壓而導(dǎo)通,使V電流被C2、R1分流,Uc電壓逐漸上升,即U(電壓也是逐漸上升,而且鉗位在2Ui數(shù)值上。從而把Uc上升的尖峰電壓的頂部消去,脈沖尖峰。
在一個(gè)周期剩下的時(shí)間里,隨著R1放電電流的減小,C2上的電壓降會(huì)返回到原來值。多余的反激電能,被消耗在R1上。此鉗位電壓是自跟蹤的,在穩(wěn)態(tài)工作時(shí),因?yàn)镃2上的電壓會(huì)自動(dòng)地調(diào)整,直到所有多余的反激電能消耗在R1上。如果在所有其他情況下,都要維持某一恒定鉗位電壓時(shí),則可以通過減小R1值或漏電感Lyp的值,來抑制鉗位電壓的升高趨勢。
不能把鉗位電壓設(shè)計(jì)得太低,因?yàn)榉醇み^沖電壓也有有用的一面。在反激作用時(shí),它提供了一個(gè)附加強(qiáng)制電壓值來驅(qū)動(dòng)電能進(jìn)入到次級(jí)電感。使變壓器次級(jí)的反激電流迅速增加。提高了變壓器的傳輸效率,同時(shí)也減小了電阻R)上的損耗。這對(duì)于低壓大電流輸出是很有意義的。